Pii: S0893-6080(98)00125-7
نویسندگان
چکیده
The Willshaw model is asymptotically the most efficient neural associative memory (NAM), but its finite version is hampered by high retrieval errors. Iterative retrieval has been proposed in a large number of different models to improve performance in auto-association tasks. In this paper, bidirectional retrieval for the hetero-associative memory task is considered: we define information efficiency as a general performance measure for bidirectional associative memory (BAM) and determine its asymptotic bound for the bidirectional Willshaw model. For the finite Willshaw model, an efficient new bidirectional retrieval strategy is proposed, the appropriate combinatorial model analysis is derived, and implications of the proposed sparse BAM for applications and brain theory are discussed. The distribution of the dendritic sum in the finite Willshaw model given by Buckingham and Willshaw [Buckingham, J., & Willshaw, D. (1992). Performance characteristics of associative nets. Network, 3, 407–414] allows no fast numerical evaluation. We derive a combinatorial formula with a highly reduced evaluation time that is used in the improved error analysis of the basic model and for estimation of the retrieval error in the naive model extension, where bidirectional retrieval is employed in the hetero-associative Willshaw model. The analysis rules out the naive BAM extension as a promising improvement. A new bidirectional retrieval algorithm — called crosswise bidirectional (CB) retrieval — is presented. The cross talk error is significantly reduced without employing more complex learning procedures or dummy augmentation in the pattern coding, as proposed in other refined BAM models [Wang, Y. F., Cruz, J. B., & Mulligan, J. H. (1990). Two coding strategies for bidirectional associative memory. IEEE Trans. Neural Networks, 1(1), 81–92; Leung, C.-S., Chan, L.-W., & Lai, E. (1995). Stability, capacity and statistical dynamics of second-order bidirectional associative memory. IEEE Trans. Syst. Man Cybern., 25(10), 1414–1424]. The improved performance of CB retrieval is shown by a combinatorial analysis of the first step and by simulation experiments: it allows very efficient hetero-associative mapping, as well as auto-associative completion for sparse patterns — the experimentally achieved information efficiency is close to the asymptotic bound. The different retrieval methods in the hetero-associative Willshaw matrix are discussed as Boolean linear optimization problems. The improved BAM model opens interesting new perspectives, for instance, in information retrieval it allows efficient data access providing segmentation of ambiguous user input, relevance feedback and relevance ranking. Finally, we discuss BAM models as functional models for reciprocal cortico–cortical pathways, and the implication of this for a more flexible version of Hebbian cell-assemblies. q 1999 Elsevier Science Ltd. All rights reserved.
منابع مشابه
The Local Structure of Space-variant Images
Local image structure is widely used in theories of both machine and biological vision. The form of the differential operators describing this structure for space-invariant images has been well documented. Although space-variant coordinates are universally used in mammalian visual systems, the form of the operators in the space-variant coordinate system has received little attention. In this re...
متن کاملExplanation of the "virtual input" phenomenon
We write this letter to comment on the "virtual input" phenomenon reported by Thaler (Neural Networks, 8(1) (1995) 55-65). The author attributed the phenomenon to the network's ability to perform pattern classification and completion, and reported that pruning probability affects the number of virtual inputs observed. Our independent study of Thaler's results, however, reveals a simpler explana...
متن کاملParallel and robust skeletonization built on self-organizing elements
A massively parallel neural architecture is suggested for the approximate computation of the skeleton of a planar shape. Numerical examples demonstrate the robustness of the method. The architecture is constructed from self-organizing elements that allow the extension of the concept of skeletonization to areas remote to image processing.
متن کاملModel selection in neural networks
In this article, we examine how model selection in neural networks can be guided by statistical procedures such as hypothesis tests, information criteria and cross validation. The application of these methods in neural network models is discussed, paying attention especially to the identification problems encountered. We then propose five specification strategies based on different statistical ...
متن کاملInformation storage capacity of incompletely connected associative memories
In this paper, the memory capacity of incompletely connected associative memories is investigated. First, the capacity is derived for memories with fixed parameters. Optimization of the parameters yields a maximum capacity between 0.53 and 0.69 for hetero-association and half of it for autoassociation improving previously reported results. The maximum capacity grows with increasing connectivity...
متن کاملPii: S0893-6080(98)00051-3
We propose a method for optimizing the complexity of Radial basis function (RBF) networks. The method involves two procedures: adaptation (training) and selection. The first procedure adaptively changes the locations and the width of the basis functions and trains the linear weights. The selection procedure performs the elimination of the redundant basis functions using an objective function ba...
متن کامل